国土交通省 NETIS登録番号 HR-100010-A 国土交通省 NETIS登録番号 QSA-090005-A

Highly Concentrated and Thin Layer Dredging Technology using Mud Suction and Pneumatic Transport Systems

Revitalization of Rivers, Ponds, and Lakes

29 November, 2012; EGM on Sustainable Urban Development

Member, Japan Dredging & Pneumatic Transport

Association

Oyanagi Construction Co., Ltd. Mr. Masayuki Hiura, Environmental Conservation division

URL http://n-oyanagi.com/

Environmental Protection in Maintenance Dredging

- * Issues in Conventional Technologies: Pump dredging is most popular and suited for large scale dredging. It vacuums mud at the bottom and transports through pipes; but since it vacuums water together, it would discharge large amount of excess water in the end, also causing water contamination.
- * Environmental Protection Type Dredging Methods : A high density (consists over 60% mud) dredging method which can overcome the issues above. By using special mud vacuum devices with negative pressure it can consecutively collect high density mud into the tank. (NETIS:HR-100010-A)
- Realities in Environmental contamination: Most damaging to the environment is the sludge surface. we co-developed a GCG Dredgeing method and technology which allows dredging only thin layers of the surface, without causing any secondary contamination. (NETIS:QSA-090005-A)

Thin Layer Dredging, which made dredging of floating sludge possible (vacuum mouse)

NETIS:HR-100010-A

Highly Concentrated and Thin Layer Dredging Technology
using Mud Suction and Pneumatic Transport Systems

3

Monitors the depth and angle of the Vacuum Mouth; depth of dredging completed location is shown by 25mm

in different colors
NETIS:QSK-090005-A
GCS900 Dredging guidance systems

Effectively used in environmental construction in various city rivers in Japan; meeting diverse needs for improvement of cities.。 1968年弁天潟公園整備(新潟県)から2012年9月現在まで約400,000m3の実績があります

Rivers in Tokyo by using the **Mud Suction and Pneumatic Transport Systems**

Features of Mud Suction and Pneumatic Transport Technology Systems

A Combination of Pneumatic Transport System and Negative pressure dredging technology

1. Transports dredged mud/soil by pneumatic pressure through a pipeline

(maximum transport ability : Longest distance=3,466mkm, Highest height=52m)

- 2. Will dredge only thin layers of sludge horizontally
- 3. the negative pressure vacuum system will not mix the bottom of the river/lake and will prevent turbid
- 4. Will dredge high density sludge with suction of less water (*proved 80% mud ratio)
- 5. Transportation of mud is done by dedicated pipeline; will prevent environmental damage (odor, transport)
- 6. Intake of effluent water is small; the work can be done in a small area, and sundrying of mud is possible
- 7. An environmentally feasible dredging which enable less barrier for materializing the work

the pipeline generates less effluent water and dredge transportation by a pipeline assures less restriction to location sites

low structure(height:1.20m, heighest from bottom:3.26m)and easy to work and pass under bridges

Negative pressure vacuuming and pneumatic transport system Flow

Dredging work is possible in any conditions

- a) in areas where certain depth is secured (0.9m) C \Rightarrow mud suction pneumatic transport barge type
- b) in shallow water e.g. lakes, marshes --> mud suction pneumatic transport amphibious type
- c) in locations where pneumatic transport onsite is not possible -- longer distance transport with reloading barges

Barge reloading type (Tokyo)

Mud suction method made possible to work under low bridges

Dredge boats can be knocked down, transported and assembled /deassembled by cranes at the site

Possible to work in narrow city rivers

Dredging and Pneumatic Transport Abilities (per hour)

method	Machine type	clay ①	Clay ②	Viscous soil	Sand soil	sand	Floating sludge
Pneumatic transport systems	T1-40型	23	27	39	34	22	Q
	T2-70型	33	40	56	50	31	C
	T2-100型	43	53	74	66	41	q
	T2-150型	60	80	110	100	70	٥
	T2-200型	119	143	200	178	108	0
Pumping transport systems	吸引圧送機	16	20	35	25	0	40
	吸引圧送船	30	35	50	45	0	6 d

Comparison of mud content in different dredging (tested in Niigata 2012,1,25)

(Mud content: ratio of sediment included in the mud mixed water when dredged.)

14

thank you for your kind attention

For more information: Oyanagi Construction Co. Ltd.

〒951-8052 新潟市中央区下大川前通ノ町2230-33 小柳建設株式会社 新潟支店 環境保全事業部 樋浦 雅行 ma-hiura@n-oyanagi.co.jp

Tel:025-223-8001,fax:025-223₁8005,携帯090-5996-5562